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ABSTRACT 

The purpose of this paper is to prove a common fixed point theorem for four selfmaps on a D*–metric 

space and deduce a common fixed point theorem for four selfmaps on a compact D*–metric space. Further 

we show that a common fixed point theorem for four selfmaps of a metric space prove by Brian Fisher ([5]) 

is a particular case of our theorem. 
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1. INTRODUCTION AND PRELIMINARIES 

 

 Fixed point theory is a fundamental area in nonlinear functional analysis, offering powerful tools 

for solving a wide range of problems across mathematics and applied sciences. The pioneering 

work of Banach on contraction mappings laid the foundation for this field. His celebrated fixed 

point theorem guarantees the existence and uniqueness of fixed points for self mappings in 

complete metric spaces and ensures convergence via Picard iteration. Over the decades, this 

classical result has inspired numerous generalizations to broader classes of mappings and more 

generalized spaces.  

 

Different mathematicians tried to generalize the usual notion of metric space (X, d). In 1992 Dhage 

[2] has initiated the study of generalized metric space called D- metric space and fixed point 

theorems for selfmaps of such spaces. Later researchers have made a significant contribution to 

fixed point of D- metric spaces in [1], [3], and [4]. Unfortunately almost all the fixed point 

theorems proved on D-metric spaces are not valid in view of papers [6], [7] and [8].  

 

Recently Shaban Sedghi, Nabi Shobe and Haiyun Zhou [9], have introduced D*- metric spaces as 

a probable modification of D- metric spaces and proved some fixed point theorems. 

Definition 1.1([9]):  Let X be a non-empty set. A function D*: X3 → [0, ∞) is said to be a 

generalized metric or D*-metric or G-metric on X, if it satisfies the following conditions 

(i) D *(x, y, z) ≥ 0 for all x, y, z ∈ X. 

(ii) D *(x, y, z) = 0 if and only if x = y = z. 
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(iii) D *(x, y, z) = D *(σ (x, y, z)) for all x, y, z ∈ X 

             where σ (x, y , z) is any permutation of the set {x, y , z}. 

(iv) D *( x, y , z ) ≤  D *(x , y , w )+ D *(w, z , z) for all x, y , z , w ∈ X .  

The pair (X, D *), where D * is a generalized metric on X is called a D*–metric space or a 

generalized metric space. 

Example 1.2:  Let (X, d) be a metric space. Define D1*: X3 → [0, ∞) by  

D1*(x, y, z) = max {d(x, y), d(y, z), d (z, x)} for x, y, z ϵ X. Then (X, D1*) is a generalized 

metric space. 

Example 1.3: Let (X, d) be a metric space. Define D2*: X3 → [0, ∞) by  

D2*(x, y, z) = d(x, y) + d(y, z) + d (z, x) for x, y, z ϵ X. Then (X, D2*) is a generalized 

metric space. 

Example 1.4: Let X = R, define D*: R3 → [0, ∞) by  

                       D *(x, y, z) = {     
0                     𝑖𝑓 𝑥 = 𝑦 = 𝑧

max  {𝑥, 𝑦, 𝑧} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Then (R, D *) is a generalized metric space. 

Note 1.5: Using the inequality in (iv) and (ii) of Definition 1.1, one can prove that if (X, D *) is a 

D*–metric space, then 

  D *(x, x, y) = D *(x, y, y) for all x, y, ∈ X. 

Infact D *(x, x, y) ≤ D *(x, x, x) + D *(x, y, y) = D *(x, y, y) and 

D *( y , y , x ) ≤  D *( y , y , y )+ D *(y , x , x ) = D *(y , x , x),  proving the inequity. 

Definition1.6:  Let (X, D*) be a D*-metric space. For x ϵ X and r > 0, the set                              BD*(x, 

r) = {y ϵ X; D*(x, y, y) < r} is called the open ball of radius r about x.  

For example, if X = R and D*: R3 → [0, ∞) is defined by  

D*(x, y, z) = | x – y | + | y – z | +| z - x| for all x, y, z ϵ R. Then 

BD*(0, 1) = {y ϵ R; D*(0, y, y) < 1} 

                = {y ϵ R; 2| y | < 1} 

                ={y ϵ R; | y | < ½} = (- ½, ½). 

Definition 1.7: Let (X, D *) be a D*–metric space and E ⊂ X.  
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(i)If for every x ∈ E, there is a δ > 0 such that BD* (x, δ) ⊂ E, then E is said to be  an open 

subset of X 

(ii)If there is a k > 0 such that D *(x, y, y) < k for all x, y ∈ E then E is said to be D*–

bounded. It has been observed in [9] that, if τ is the set of all open sets in (X, D*), then τ 

is a topology on X (called the topology induced by the D*–metric) and also proved that 

BD* (x, r) is an open set for each x ∈ X and r > 0 ([9], Lemma 1.5). If (X, τ) is a compact 

topological space we shall call (X, D *) is a compact D*–metric space. 

Definition 1.8:   Let (X, D *) be a D*–metric space.  A sequence {xn} in X is said to  

(i) converge to x if  D *(xn , xn , x ) = D *(xn , x , x) → 0 as n →∞  

(ii) be a Cauchy sequence, if to each ∈ > 0, there is a natural number n0  

             such that D *(xn , xn , xm ) < ∈ for all m , n ≥ n0 . 

 It is easy to see (infact proved in [9], Lemma 1.8 and Lemma 1.9) that, if {xn} converges 

to x in(X, D*) then x is unique and that {xn} is a Cauchy sequence in (X , D*). However, a Cauchy 

sequence in a (X, D *) need not be convergent as shown in the example given below. 

 Example 1.9:  Let X = (0, 1] and D *(x, y, z) = | x – y | +| y – z | + | z – x | for x, y, z ∈ X, so that 

(X, D *) is a D*–metric space. 

Define xn =  
1

𝑛
  for n = 1, 2, 3 ……., then                                                                                                                                                    

D *( xn , xn , xm ) = 2 | xn – xm | = 2 |  -  |, so that 

D *( xn , xn , xm ) → 0 as m, n → ∞, proving {xn} is a Cauchy sequence in (X, D*). Clearly 

{xn} does not converge to any point in X. 

Definition 1.10:  A D*–metric space (X, D *) is said to complete if every Cauchy sequence in it 

converges to some point in it.  

It follows that the D*–metric space given in Example 1.9 is not complete.  

 Note 1.11:  We have seen (In Example 1.2 and Example 1.3) that on any metric space (X, d), it is 

possible to define at least two D*–metrics, namely D1* and D2 *, using the metric d. We shall call 

D1 * and D2 * as D*–metrics induced by d. Thus every metric space (X, d) gives rise to at least 

two D*–metric spaces (X, D1 *) and (X, D2*). Also if (X, D *) is a D*–metric then defining d0 (x, 

y) = D *(x, y, y) for x, y ∈ X, we can show easily that   (X, d0) is a metric space and we shall call 

d0  as a metric induced   by D *. 

The following result is of use for our discussion. 

 Theorem 1.12:  Let (X, d) be a metric space and Di *(i =1, 2) be the two D*– metrics induced by 
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d (given in Example 1.2 and Example 1.3).  For any i (=1, 2) a sequence {xn} in   (X, Di *) is a 

Cauchy sequence if and only if {xn} is a Cauchy sequence in (X , d ). 

 Proof: - First note that for i =1, 2 we have 

 d ( x , y ) ≤  Di *(x , y , y ) ≤  2d (x , y) for all x, y  ∈ X . 

 Now the theorem follows immediately in view of the above inequality. 

  For example, if {xn } is a Cauchy sequence in (X , d ), then for any given ∈ > 0 choose a 

natural number n0 such that m, n ≥ n0   implies d ( xm, xn) <  ; and note that for the same n0 we 

have  m, n ≥ n0   implies  Di *(xm , xn , xn ) ≤ 2d (xm xn ) < ∈, proving that {xn } is a Cauchy sequence 

in (X , Di *). 

Similarly the other part of the theorem can be proved using the other inequality noted in 

the beginning of the proof. 

 Corollary 1.13:  Suppose (X, d) is a metric space. Let D1 * and D2 * be two D*– metrics induced 

by d, then for any i (=1, 2) the space (X, Di *) is complete if and only if (X, d) is complete. Proof: 

- Follows from Theorem 1.12. 

Definition 1.14:  If (X, D*) is a D*-metric space, then D* is a continuous function on X3, in the 

sense that (xn, yn, zn ) = D*(x, y, z), whenever  {(xn, yn, zn)} in X3 converges to                (x, 

y, z)  X3. Equivalently,       

             n= x, n= y, n= z (xn, yn, zn ) = D*(x, y, z).  

 

Notation: For any selfmap T of X, we denote T(x) by Tx.  

 

                 If S and T are selfmaps of a set X, then any z ∈ X such that Sz = Tz = z is called a 

common fixed point of S and T. 

Two selfmaps S and T of X are said to be commutative if ST = TS where ST is their 

composition SoT defined by (SoT) x = STx for all x ∈ X. 

            Definition 1.15: Suppose S and T are selfmaps of a D*–metric space (X, D*) satisfying the condition    

T(X) ⊆ S(X). Then for any x0 ∈ X, Tx0 ∈ T(X) and hence Tx0 ∈ S(X), so that there is a x1 ∈ X with 

Tx0 = Sx1, since T(X) ⊆ S(X). Now Tx1 ∈ T(X) and hence there is a x2 ∈ X with Tx2 ∈ T(X) ⊆ 

S(X) so that Tx1 = Sx2.  Again Tx2 ∈ T(X) and hence Tx2 ∈ S(X) with   Tx2 = Sx3. Thus repeating 

this process to each x0 ∈ X, we get a sequence {xn} in X such that Txn = Sxn+1 for   n ≥ 0. We shall 

call this sequence as an associated sequence of x0 relative to the two selfmaps S and T. It may 

be noted that there may be more than one associated sequence for a point x0 ∈ X relative to 

selfmaps S and T. 
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          Let S and T are selfmaps of a D*-metric space (X, D*) such that T(X) ⊆ S(X). For any     xo 

ϵ X, if {xn} is a sequence in X such that  Txn = Sxn+1 for    n ≥ 0, then {xn} is called an associated 

sequence of x0 relative to the two selfmaps S and T.  

Definition 1.16 :  A function Ø: [0,∞) → [0,∞) is said to be a  contractive modulus, if            Ø(0) 

= 0   and   Ø(t)  < t for t  >  0. 

Definition 1.17: A real valued function Ø defined on X ⊆ R is said to be upper semi continuous, 

if lim
𝑛→∞

sup Ø(𝑡n) ≤ Ø (t) for every sequence {tn} in X with tn → t as n → ∞. 

Definition 1.18: If S and T are selfmaps of a D*-metric space (X, D*) such that for every sequence 

{xn} in X with lim
𝑛→∞

𝑆𝑥n = lim
𝑛→∞

𝑇𝑥n = t, we have  

lim
𝑛→∞

𝐷*(STxn, TSxn, TSxn) = 0, then we say that S and T are compatible. 

2. THE MAIN RESULTS 

2.1 Theorem. Suppose S, T, I and J be selfmaps of a D*–metric space (X, D*) satisfying the                          

conditions  

(i) S ( X ) ⊆ J ( X ) and  T ( X ) ⊆ I ( X )  

 

(ii) D *(Sx, Ty, Ty) ≤ ρ (x, y) for all x, y ∈ X ,  

where 

 (ii)′ ρ ( x , y ) = max{D *(Ix, Jy, Jy), D *(Ix, Sx, Sx), D *(Jy, Ty, Ty), 

                                 D*(Ix, Ty, Ty), 
1

2
 D*(Jy, Sx, Sx)} for  x, y ∈ X 

(iii)      S, T, I and J are continuous.  

(iv)      the pairs (S , I ) and (T, J) are compatible,  

              and 

(v) there is a point x0 ∈ X  and an associated sequence {xn } of x0  relative to the four  

selfmaps such that the sequences {Sx2n } and {Tx2n+1 } converge to some point z ∈ 

X  

Further, if     

(vi) there exists (a, b)  X2  such that f(a, b) =  ,  
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where  

(vi)′ f(x, y) =  
𝐷∗(𝑆𝑥,   𝑇𝑦,   𝑇𝑦)

𝜌(𝑥,𝑦)
  

      then S, T, I and J have a unique common fixed point  z ϵ X. also z is the unique fixed point for 

the pair (S, I) and for the pair (T, J). 

Proof: First suppose that ρ(x', y') = 0 for some x', y'  X. Then     

(2. 1. 1) max{D*(Ix', Jy', Jy'), D*(Ix', Sx', Sx'), D*(Jy', Ty', Ty'), 

                                                  D*(Ix', Ty', Ty'), D*(Jy', Sx', Sx')} = 0,  

 which implies  

(2.1.2)  Ix' = Sx' = Jy' = Ty', and also 

(2. 1. 3) SIx' = S(Sx') = S2x' and 

(2. 1. 4) TJy' = T(Ty') = T2y'.  Now since the pair (S, I) is compatible, we have  

(2.1.5)  (SIyn, ISyn, ISyn) = 0 

whenever  Syn,, Iyn → t as n → ∞ for some t  X. Letting  yn = x' for n ≥ 1, then Syn → Sx' and Iyn 

→ Ix' as n →∞. Therefore (2.1.5) gives that D*(SIx', ISx', ISx') = 0 or SI x' = IS x'. Also since ISx' 

= S2x' = SIx' and Jy' = Ty' we get 

ρ(Sx', y') = max {D*(ISx', Jy', Jy'), D*(ISx', S 2 x', S 2x'), D*(Jy', Ty', Ty'),’                                                                                    

               D*(IS x', Ty'’, Ty'’), 
1

2
 D*(Jy', S 2x', S 2x')} 

                  = max {D*(S2x', Ty', Ty'), 0, 0, 
1

2
 D*(S2x', Ty', Ty'), 

1

2
 D*(S2x', Ty', Ty')} 

                   = D*(S2x', Ty', Ty'). That is            

(2. 1. 6) ρ(Sxʹ, yʹ) = D*(S2x', Ty', Ty') 

Now if Ty′  S2x', then by (ii), we have  

(2.1.7) D*(S2x', Ty', Ty') ˂ ρ(Sx', y') 

Thus (2.1.6) and (2.1.7) contradict each other if Ty′  S2x'. Therefore S2xʹ =Tyʹ. Further, from (2. 

1. 2) 

(2. 1. 8) S2xʹ = Ty' = S(Sx') =STyʹ and so Ty' = z(say) is a fixed point of S. Again, by (2. 1. 2)  

(2. 1. 9) Iz = ITy' = ISx' = STy' = Sz = z. Therefore Sz = Iz = z, showing that z is a common fixed 

point of S and I. Again since the pair (T, J) is compatible, we have                    

(TJyn, JTyn, JTyn) = 0. Whenever  Tyn,, Jyn → t as n → ∞ for some t  X. taking   yn = 

y', we find that  Tyn → Ty',  Jyn → Jy' as n →∞. Therefore (2.1.5) gives that                  

(2. 1. 10) D*(TJy', JTy', JTy') = 0 or TJy' = JTy'.  

Now if Sx′  T2y', then by (ii), we have  

(2.1.11) D*(Sx', T2y', T2y') ˂ ρ(x', Ty') 

But, by (2. 1. 2) and (2. 1. 4)we have 

ρ(x', Ty') = max {D*(Ix', JTy', JTy'), D*(Ix', Sx', Sx'), D*(JTy', T2y', T2y'),’                                                                                    

               D*(Ix', T2y', T2y'), 
1

2
 D*(JTy', Sx', Sx')} 
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                   =  D*(Sx', T2y', T2y'). That is,  

(2. 1. 12) ρ(xʹ, Tyʹ) = D*(Sxʹ, T2yʹ, T2yʹ) 

Thus (2. 1. 11) and (2. 1. 12) contradict each other if Sxʹ ≠ T2yʹ.  

Therefore Sxʹ = T2yʹ. hence, by (2. 1.10) and (2. 1. 2), we have  

(2. 1. 13)  Sx' = T2y' = T(Ty') = TJy' = JTy' = JSxʹ, showing that Sxʹ = zʹ is a fixed point of J. 

Further 

(2. 1. 14) Tzʹ = TSx' = TJy' = JTy' = JSxʹ = Jzʹ = zʹ and therefore Tzʹ = Jzʹ = zʹ, showing that zʹ is 

a common fixed point of T and J.  

Now we prove that z = zʹ. 

First note that, if z ≠ z', then by (ii), we have   

(2. 1. 15) D*(z, z', z') = D*(Sz, Tz', Tz') ˂  ρ(z, z'). But 

 (2. 1. 16)  ρ(z,, z') = max {D*(Iz, Jz', Jz'), D*(Iz, Sz, Sz), D*(Jz', Tz', Tz'), 

     D*(I z, Tz', Tz'), 
1

2
 D*(Jz',Sz,Sz)} = 0 

                  = max {D*(z, z', z'), 0, 0, 
1

2
 D*(z, z', z'), 

1

2
 D*(z, z', z')} 

      = D*(z, z', z'),  

Since (2. 1. 15) and (2. 1. 16) contradict each other if z ≠ zʹ, it follows that z = z'. Hence z 

is the unique common fixed point of S, T, I and J. 

 

 Now suppose that ρ(x, y)   0 for all x, y  X, so that f(x, y) is well defined. Now by the 

inequality (ii), we find that f(x, y)  1 for all x, y  X. Hence if c = f(p, q) then c  1, so that    f(x, 

y)  c for all x, y  X and therefore, from (vi)ʹ D*(Sx, Ty, Ty)  c ρ(x , y) for all x, y∈ X 

 

Since, by hypothese, all the conditions of the corollary holds for the four selfmaps S, T, I and J; it 

follows that they have a common fixed point z ∈ X. Further z is the unique common fixed point 

of S and I; and of T and J. 

 

To prove the uniqueness of z, let w be another common fixed point of S, T, I and J. 

If w ≠ z, then by (ii), we have 

(2. 1. 17)  D*(z, w, w) = D*(Sz, Tw, Tw) ˂  ρ(z, w) 

 (2. 1. 18)  ρ(z,, w) = max {D*(Iz, Jw, Jw), D*(Iz, Sz, Sz), D*(Jw, Tw, Tw),                                      

                                      D*(I z, Tw, Tw), 
1

2
 D*(Jw, Sz, Sz)}  

                  = max {D*(z, w, w), 0, 0, 
1

2
 D*(z, w, w), 

1

2
 D*(z, w, w)} 

      = D*(z, w, w),  

 Now (2, 1,17) and (2. 1. 18) contradict each other if z ≠ w. Therefore z = w, showing z is the 

unique common fixed point of S, T, I and J. Further z is the unique common fixed point of S and 

I; and of T and J. 

 Now we prove some consequences of Theorem 2. 1 
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2.2 Corollary: Suppose (X, D*) is a D*-metric space and S, T, I and J are selfmaps of X satisfying 

conditions (i), (ii), (iii) and (iv) of Theorem 2.1. Further, if (X, D*) is compact, then S, T, I and J 

have a unique common fixed point z. Also z is the unique common fixed point for the pair S and 

I; and for the pair T and J. 

Proof: Since (X, D*) is  a compact D*-metric space, it is complete and  therefore for each   x0  

X and for any associated sequence {xn} of x0 relative to four selfmaps  such that the sequences 

{Sx2n} and {Tx2n+1} converge to some z  X and hence condition (v) of Theorem 2.1 holds . Also, 

if (X, D*) is compact D*-metric space, then f(x, y) is a continuous function on the compact D*-

metric space X2. Therefore we can find     (a, b)  X2 such that             f(a, b)  = , 

proving that the condition (vi) of the Theorem 2.1. Hence by Theorem 2. 1, the conclusion of the 

corollary follows. 

 

2.3 Corollary ([5]):  Suppose S, T, I and J are four selfmaps of metric space (X, d) such that  

(i)     S(X) ⊆ J(X) and T(X) ⊆ I(X) 

(ii)      d(Sx, Ty) ˂ ρ0(x, y) for all x, y  X.   

          where 

    ρ0(x, y) =max {d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), 
1

2
 d(Ix, Ty), 

1

2
 d(Jy, Sx)} 

(iii)   S, T, I and J are continuous on X. and  

(iv)   SI=IS and TJ = JT, further if  

(v) X is compact. 

 

Then the four selfmaps S, T, I and J have a unique common fixed point z  X. Also z is the unique 

common fixed point of S and I; and of T and J. 

 

Proof: Given (X, d) is a metric space satisfying condition (i) to (v) of the corollary.                

If  D1*(x, y, z) = max{d(x, y), d(y, z), d(z, x)}, then (X, D1*) is a D*-metric space and   D1*(x, y, 

x)= d(x, y). Therefore (ii) can be written as D*(Sx, Ty, Ty) ˂ ρ(x, y) for all x, y X, where ρ(x, y) 

= max {D1*(Ix, Jy, Jy), D1*(Ix, Sx, Sx), D1*(Jy, Ty, Ty), 
1

2
 D1*(Ix, Ty, Ty),                

1

2
 D1*(Sy, 

Tx, Tx)}, which is the same as condition (ii) of Theorem 2.1. Also since (X, d) is complete, we 

have (X, D1*) is complete, by Corollary 1.13. Now S and T are selfmaps on  (X, D1*) satisfying 

conditions of Corollary 2.2 and hence the corollary follows. 
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